APPROXIMATION SOLUTION OF TWO-DIMENSIONAL LINEAR STOCHASTIC FREDHOLM INTEGRAL EQUATION BY APPLYING THE HAAR WAVELET
نویسندگان
چکیده مقاله:
In this paper, we introduce an efficient method based on Haar wavelet to approximate a solutionfor the two-dimensional linear stochastic Fredholm integral equation. We also give an example to demonstrate the accuracy of the method.
منابع مشابه
approximation solution of two-dimensional linear stochastic fredholm integral equation by applying the haar wavelet
in this paper, we introduce an efficient method based on haar wavelet to approximate a solutionfor the two-dimensional linear stochastic fredholm integral equation. we also give an example to demonstrate the accuracy of the method.
متن کاملApproximation solution of two-dimensional linear stochastic Volterra-Fredholm integral equation via two-dimensional Block-pulse functions
In this paper, a numerical efficient method based on two-dimensional block-pulse functions (BPFs) is proposed to approximate a solution of the two-dimensional linear stochastic Volterra-Fredholm integral equation. Finally the accuracy of this method will be shown by an example.
متن کاملapproximation solution of two-dimensional linear stochastic volterra-fredholm integral equation via two-dimensional block-pulse functions
in this paper, a numerical efficient method based on two-dimensional block-pulse functions (bpfs) is proposed to approximate a solution of the two-dimensional linear stochastic volterra-fredholm integral equation. finally the accuracy of this method will be shown by an example.
متن کاملApproximation solution of two-dimensional linear stochastic Volterra-Fredholm integral equation via two-dimensional Block-pulse functions
T The nonlinear and linear Volterra-Fredholm ordinary integral equations arise from various physical and biological models. The essential features of these models are of wide applicable. These models provide an important tool for modeling a numerous problems in engineering and science [6, 7]. Modelling of certain physical phenomena and engineering problems [8, 9, 10, 11, 12] leads to two-dimens...
متن کاملNumerical solution of two-dimensional fuzzy Fredholm integral equations using collocation fuzzy wavelet like operator
In this paper, first we propose a new method to approximate the solution of two-dimensional linear fuzzy Fredholm integral equations of the second kind based on the fuzzy wavelet like operator. Then, we discuss and investigate the convergence and error analysis of the proposed method. Finally, to show the accuracy of the proposed method, we present two numerical examples.
متن کاملApplying fuzzy wavelet like operator to the numerical solution of linear fuzzy Fredholm integral equations and error analysis
In this paper, we propose a successive approximation method based on fuzzy wavelet like operator to approximate the solution of linear fuzzy Fredholm integral equations of the second kind with arbitrary kernels. We give the convergence conditions and an error estimate. Also, we investigate the numerical stability of the computed values with respect to small perturbations in the first iteration....
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 5 شماره 4 (FALL)
صفحات 361- 372
تاریخ انتشار 2015-03-21
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023